About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Quantum-confined excitonic states at high-quality interfaces in GaAs(n type)/AlxGa1-xAs(p type) double heterostructures
Abstract
We report 1.8-K H-band photoluminescence (PL) from abrupt, high-quality GaAs(n type)/Al0.3Ga0.7As(p type) double heterostructures prepared by metalorganic chemical vapor deposition, versus GaAs thickness (0.12.0 1/4m), to study dynamics of carriers quantum confined near heterointerfaces. Our time decays yield bimolecular kinetics, spectral peak shifts in time, and lifetimes (across the H-band PL) varying from nanoseconds to >50 1/4s. Numerical modeling yields a two-dimensional-exciton description with quantitative predictions for exciton binding energies, transition energies, charge densities, oscillator strengths, and lifetimes which, upon radiative decay, give rise to the observed H-band dynamics. We thus explain the observed kinetics and prove that H-band PL arises not from impurities, but from intrinsic bound excitons involving both heterointerfaces. Further, we find that such highly polarizable, spatially indirect, electron-hole systems may only be adequately understood in wide (non-quantum-well) structures. © 1991 The American Physical Society.