About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE J-EDS
Paper
On the device design and drive-current capability of SOI lateral bipolar transistors
Abstract
The SOI symmetric lateral bipolar transistor is uniquely suitable for operation at high injection currents where the injected minority carrier density in the base region is larger than the base doping concentration. Transistors operating in high-injection can achieve record-high drive currents on the order of 3-5 mA/μm. The commonly used Shockley diode and bipolar current equations are modified to be applicable for all injection levels. Excellent agreement is shown between measured and modeled currents for data at VBC = 0. A novel partially depleted-base design can further increase the drive current and the current gain, especially at low VBE.