LID-integral cold plate topology integration, performance, and reliability
Abstract
We demonstrate the Lid-Integral Silicon Coldplate topology as a way to bring liquid cooling closer to the heat source IC. It allows to eliminate one thermal interface material (TIM2), to establish and improve TIM1 during packaging, to use waferlevel processes, and to ease integration in 1st level packaging. We describe the integration, and analyze reliability aspects of this package using modeling and test vehicle builts. To compare the impact of geometry, materials and mechanical coupling on warpage, strains and stresses, we simulate finite element models of five different topologies on an organic LGA carrier. We measure the thermal performance in terms of thermal resistance from coldplate base to inlet liquid and obtain 15mm2K/W at 30 kPa pressure drop across the package. We build two different topologies using silicon coldplates and injection molded lids. Gasket-attached coldplates pass an 800 kPa pressure test, directattached coldplates fracture in the coldplate. The results advise to use a compliant layer between coldplate and the manifold lid and promise a uniformly thick TIM1 layer in the Si-Si matched topology. The work shows the feasibility of composite lids with integrated silicon coldplates in high heat flux applications.