Publication
SPIE Advanced Lithography 2024
Conference paper

Identifying trends in photoresist polymer properties to improve line and space defects Considerations to Improve Microbridge Defectivity in EUV Chemically Amplified Photoresists

View publication

Abstract

The drive toward tighter pitch and higher density integrated circuits requires continual advancement in lithography. Advanced photolithography tools use extreme ultraviolet (EUV) light with a wavelength of 13.5nm. The high energy nature of EUV light generates secondary electrons in the photoresist that are responsible for the photochemistry that induces the solubility switch. This distinct mechanism has provided the driving force for the development of new photoresists that are sensitive to EUV and highly reactive toward secondary electrons. Despite the considerable change in acid generation mechanism going from DUV to EUV, chemically amplified photoresists continue to be leading photoresist candidates for new process nodes at low NA EUV (0.33 NA) and their use is expected to extend into early high NA (0.55 NA). Herein the after-developer defects (ADI) and EUV P36 LS trench printing performance of a series of chemically amplified photoresists (CAR) with distinct chemistry developed specifically for EUV lithography are compared. In particular, the relationship of different leaving group chemistries and polymer manufacturing processes on stochastic defectivity is explored as well as the connection to photoresist polymer hydrophobicity and homogeneity. The insights gained from this study guide design strategies for improvement of advanced chemically amplified photoresists for EUV lithography.