About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE TNS
Paper
Evaluating the influence of various body-contacting schemes on single event transients in 45-nm SOI CMOS
Abstract
We investigate the single-event transient (SET) response of T-body and notched-body contacted MOSFETs from a commercial 45 nm SOI RF-CMOS technology. Although body-contacted devices suffer from reduced RF performance compared to floating body devices, previous work on 65 nm and 90 nm MOSFETs has shown that the presence of a body-contact significantly mitigates the total ionizing dose (TID) sensitivity that is exhibited in floating-body SOI MOSFETs. The influence of body-contacting schemes on the single-event effect (SEE) sensitivity is examined here through time-resolved measurements of laser and microbeam-induced transients from T-body and notched-body MOSFETs. Laser-induced transients demonstrate the reduced SEE sensitivity of the notched-body MOSFETs as compared to the T-body MOSFETs; this is evidenced by a uniform reduction in the peak transient magnitudes and collected charge for transients captured at the worst-case bias of VDS = 1.0 V, as well as with all terminals grounded. Microbeam-induced transient data are also presented to support the validity of the laser-induced transient data. Together, these data provide new insight into the RF versus TID versus SEE tradeoffs associated with body contacting schemes in nm-scale MOSFETs, an important concern for emerging space-based electronics applications. © 2010 IEEE.