About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CICC 2011
Conference paper
A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons
Abstract
Efforts to achieve the long-standing dream of realizing scalable learning algorithms for networks of spiking neurons in silicon have been hampered by (a) the limited scalability of analog neuron circuits; (b) the enormous area overhead of learning circuits, which grows with the number of synapses; and (c) the need to implement all inter-neuron communication via off-chip address-events. In this work, a new architecture is proposed to overcome these challenges by combining innovations in computation, memory, and communication, respectively, to leverage (a) robust digital neuron circuits; (b) novel transposable SRAM arrays that share learning circuits, which grow only with the number of neurons; and (c) crossbar fan-out for efficient on-chip inter-neuron communication. Through tight integration of memory (synapses) and computation (neurons), a highly configurable chip comprising 256 neurons and 64K binary synapses with on-chip learning based on spike-timing dependent plasticity is demonstrated in 45nm SOI-CMOS. Near-threshold, event-driven operation at 0.53V is demonstrated to maximize power efficiency for real-time pattern classification, recognition, and associative memory tasks. Future scalable systems built from the foundation provided by this work will open up possibilities for ubiquitous ultra-dense, ultra-low power brain-like cognitive computers. © 2011 IEEE.