About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE JSSC
Paper
A Low Ripple Switched-Capacitor Voltage Regulator Using Flying Capacitance Dithering
Abstract
In this work, a switched-capacitor voltage regulator (SCVR) that dithers flying capacitance to reduce output voltage ripple is presented, and the benefits of such ripple reduction are investigated. In the proposed technique, SC converters are designed to run at the maximum available frequency, and the flying capacitance for different phases is adjusted according to load current change through comparators and a digital controller. The proposed technique is demonstrated in a 65 nm test chip consisting of a 40-phase SCVR with 4b capacitance modulation (CM) and a 2:1 conversion ratio. On-chip circuits for ripple measurement and load performance monitoring were included to accurately assess the magnitude and impact of ripple reduction. Measurement results show that at a 2.3 V input, an on-chip ripple magnitude of 6-16 mV at 1 V output is achieved for 11-142 mA load. Peak efficiency is 70.8% at a power density of 0.187 W/mm2.