About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
JAAMAS
Paper
Voting with random classifiers (VORACE): theoretical and experimental analysis
Abstract
In many machine learning scenarios, looking for the best classifier that fits a particular dataset can be very costly in terms of time and resources. Moreover, it can require deep knowledge of the specific domain. We propose a new technique which does not require profound expertise in the domain and avoids the commonly used strategy of hyper-parameter tuning and model selection. Our method is an innovative ensemble technique that uses voting rules over a set of randomly-generated classifiers. Given a new input sample, we interpret the output of each classifier as a ranking over the set of possible classes. We then aggregate these output rankings using a voting rule, which treats them as preferences over the classes. We show that our approach obtains good results compared to the state-of-the-art, both providing a theoretical analysis and an empirical evaluation of the approach on several datasets.