About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
We introduce PCP-nets, a formalism to model qualitative conditional preferences with probabilistic uncertainty. PCP-nets generalise CP-nets by allowing for uncertainty over the preference orderings. We define and study both optimality and dominance queries in PCP-nets, and we propose a tractable approximation of dominance which we show to be very accurate in our experimental setting. Since PCP-nets can be seen as a way to model a collection of weighted CP-nets, we also explore the use of PCP-nets in a multi-agent context, where individual agents submit CP-nets which are then aggregated into a single PCP-net. We consider various ways to perform such aggregation and we compare them via two notions of scores, based on well known voting theory concepts. Experimental results allow us to identify the aggregation method that better represents the given set of CP-nets and the most efficient dominance procedure to be used in the multi-agent context.