About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
AAMAS 2022
Conference paper
Voting with Random Classifiers (VORACE): Theoretical and Experimental Analysis
Abstract
Ensemble methods are built by training many different models and aggregating their outputs to output the prediction of the whole system. In this work, we study the behavior of an ensemble method where voting rules are used to aggregate the output of a set of randomly-generated classifiers. We provide both a theoretical and an empirical analysis of this method, showing that it performs comparably with other state-of-the-art ensemble methods, while not requiring any domain expertise to fine-tune the individual classifiers.