About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CCS 2023
Workshop paper
Tutorial-HEPack4ML '23: Advanced HE Packing Methods with Applications to ML
Abstract
Outsourcing computations over sensitive data to a third-party cloud environment should often rely on dedicated privacy-preserving solutions in order to adhere to privacy regulations such as the GDPR. One solution that gained great attention is fully homomorphic encryption (FHE), a cryptographic method that allows performing different types of computation on encrypted data. Still, writing a non-interactive FHE code that evaluates complex functions is a task that is mostly left to experts. Otherwise, the resulted code may become very slow and even impractical. Tile tensor is a recent data structure that comes together with a dedicated language that aims to simplify the process of writing complex FHE programs. This tutorial introduces developers of security solutions without previous FHE background to the world of FHE programming through using tile tensors. It provides step-by-step guidelines for implementing complex operators such as matrix-multiplication and convolutions, and eventually guides the audience toward writing their own privacy-preserving convolutional neural network solution. The demonstrations in this tutorial use Python and the HElayers library that implements tile tensors.