About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Microelectronic Engineering
Paper
Stress evolution during Ni-Si compound formation for fully silicided (FUSI) gates
Abstract
The stress (force) evolution during the formation of different Ni silicide phases was monitored by in situ curvature measurements, for the reaction of thin Ni films of various thicknesses with 100 nm polycrystalline-Si deposited on oxidized (1 0 0) Si substrates. The silicide phase formation was also monitored by in situ X-ray diffraction, allowing to match and interpret the stress evolution in terms of the formation of the different silicide phases. We found that stresses developed during the formation of the different silicides can be explained qualitatively in terms of the corresponding volume changes at the reacting interfaces. Furthermore, the matching between XRD and force curve reveals that the highest compressive stress is related to the formation of the Ni31Si12 phase, and that the stress formed is relaxed when the reaction is completed. © 2007 Elsevier B.V. All rights reserved.