About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2021
Conference paper
Sparse graph based sketching for fast numerical linear algebra
Abstract
In recent years, a variety of randomized constructions of sketching matrices have been devised, that have been used in fast algorithms for numerical linear algebra problems, such as least squares regression, low-rank approximation, and the approximation of leverage scores. A key property of sketching matrices is that of subspace embedding. In this paper, we study sketching matrices that are obtained from bipartite graphs that are sparse, i.e., have left degree s that is small. In particular, we explore two popular classes of sparse graphs, namely, expander graphs and magical graphs. For a given subspace U ⊆ Rn of dimension k, we show that the magical graph with left degree s = 2 yields a (1 ± ε) 2-subspace embedding for U, if the number of right vertices (the sketch size) m = O(k2/ε2). The expander graph with s = O(log k/ε) yields a subspace embedding for m = O(k log k/ε2). We also discuss the construction of sparse sketching matrices with reduced randomness using expanders based on error-correcting codes. Empirical results on various synthetic and real datasets show that these sparse graph sketching matrices work very well in practice.