About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
FOCS 2011
Conference paper
Near optimal column-based matrix reconstruction
Abstract
We consider low-rank reconstruction of a matrix using a subset of its columns and we present asymptotically optimal algorithms for both spectral norm and Frobenius norm reconstruction. The main tools we introduce to obtain our results are: (i) the use of fast approximate SVD-like decompositions for column-based matrix reconstruction, and (ii) two deterministic algorithms for selecting rows from matrices with orthonormal columns, building upon the sparse representation theorem for decompositions of the identity that appeared in [1]. © 2011 IEEE.