Conference paper
Program equivalence and context-free grammars
Barry K. Rosen
SWAT 1972
Let X be a data matrix of rank ρ, representing n points in d-dimensional space. The linear support vector machine constructs a hyperplane separator that maximizes the 1- norm soft margin. We develop a new oblivious dimension reduction technique which is precomputed and can be applied to any input matrix X. We prove that, with high probability, the margin and minimum enclosing ball in the feature space are preserved to within ε-relative error, ensuring comparable generalization as in the original space. We present extensive experiments with real and synthetic data to support our theory.
Barry K. Rosen
SWAT 1972
Ryan Johnson, Ippokratis Pandis
CIDR 2013
Giuseppe Romano, Aakrati Jain, et al.
ECTC 2025
Miao Guo, Yong Tao Pei, et al.
WCITS 2011