About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Heat Transfer
Paper
Marangoni Mechanism in pulsed laser texturing of magnetic disk substrates
Abstract
This paper proposes a mechanism for topographical features formed during pulsed laser texturing of Ni-P magnetic disk substrates. A salient feature of the process is the ability to raise a central peak in the irradiated spot, providing a low contact area bearing for the slider-head of a computer hard drive. Formation of topography is believed to involve gradient capillary forcesacting at the surface of the molten pool (Marangoni effect). However, the central peak cannot be explained with thermocapillary forces alone. Therefore, it is suggested that a compositional gradient due to the depletion of a surfactant at the molten surface provides the necessary condition to reverse the capillary force in the central region. This perspective is investigated using finiteelement modeling of the Lagrangian fluid mechanics coupled with heat and mass diffusion. © 1997 by ASME.