About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Materials Research
Paper
Lowering the formation temperature of the C54-TiSi2 phase using a metallic interfacial layer
Abstract
We demonstrate that the formation temperature of the C54 TiSi2 phase from the bilayer reaction of Ti on Si is lowered by approximately 100 °C by placing an interfacial layer of Mo or W between Ti and Si. Upon annealing above 500 °C, the C49 TiSi2 phase forms first, as in the reaction of Ti directly on Si. However, the temperature range over which the C49 phase is stable is decreased by approximately 100 °C, allowing C54 TiSi2 formation below 700 °C. Patterned submicron lines (0.25-1.0 μm wide) fabricated without the Mo layer contain only the C49 TiSi2 phase after annealing to 700 °C for 30 s. With a Mo layer less than 3 nm thick between Ti and Si, however, a mixture of C49 and C54 TiSi2 was formed, resulting in a lower resistivity. The enhanced formation of the C54 TiSi2 is attributed to an increased density of nucleation sites for the C49-C54 phase transformation, arising from a finer grained precursor C49 phase.