About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2022
Demo paper
Label Sleuth: From Unlabeled Text to a Classifier in a Few Hours
Abstract
Text classification can be useful in many real-world scenarios, saving a lot of time for end users. However, building a classifier generally requires coding skills and ML knowledge, which poses a significant barrier for many potential users. To lift this barrier we introduce Label Sleuth, a free open source system for labeling and creating text classifiers. This system is unique for; (a) being a no-code system, making NLP accessible for non-experts, (b) guiding its users throughout the entire labeling process until they obtain their desired classifier, making the process efficient - from cold start to a classifier in a few hours, (c) being open for configuration and extension by developers. By open sourcing Label Sleuth we hope to build a community of users and developers that will widen the utilization of NLP models.