Interdiffusion at polyimide interfaces

View publication


Interdiffusion at interfaces between deuterated polyamic acid (d-PAA) and polyimide (PI) films was investigated with forward recoil spectrometry, an ion beam analysis technique. The PI films were prepared by spin coating a solution of PAA on a silicon substrate, followed by an anneal at a temperature Ti, which produced partial or complete conversion of the PAA to PI. An overlayer of d-PAA was added, in one set of samples by spin coating from solution, and in another set by transferring (in the absence of solvents) a dry d-PAA film onto the PI surface. The bilayer samples were then either annealed at a temperature Td or allowed to stand at room temperature. No interdiffusion occurred in the solventless transfer samples for any combination of temperatures Ti or Td from room temperature up to 400°C. Bilayers prepared by spin coating d-PAA from solution directly on partially cured PI films did, however, show significant interdiffusion distances w, which decreased with increasing values of Ti to immeasurable levels by Ti = 200°C. The decrease in w with increasing Ti is thought to be caused by a positive Flory parameter between PAA and PI which increases with the imide fraction in the PI film; the result is an increasing immiscibility between the swollen polymer layers. Subsequent annealing of these spin-coated bilayers at a temperature Td up to 400°C was ineffective in producing any additional interdiffusion. The absence of any thermally activated interdiffusion (even for initially unimidized samples), with either the solventless-transfer or spin-coated preparation methods may be attributed to the rapid increase of the glass transition temperature of the polymer with imidization. © 1992.


01 Jan 1992