Journal of Applied Physics

High-field electrical transport in amorphous phase-change materials

Download paper


Electrical transport in chalcogenide-based phase change materials is an active area of research owing to the prominent role played by these materials in the field of information technology. Here, we present transport measurements (IV curves) obtained on line-cells of as-deposited amorphous phase change materials (Ge2Sb2Te5, GeTe, Ag4In3Sb66Te27) over a wide voltage and temperature range (300 K to 160 K). The well defined geometry of our devices enables a description of the transport behavior in terms of conductivity vs. electric field. At higher temperatures (300 K ≥ T ≥ 220 K) and low to intermediate fields (F < 20 V/μm), the data can be described within the framework of a previously developed model, which is based on multiple trapping transport together with 3D Poole-Frenkel emission from a two-center Coulomb potential. Based on this model, we observe a temperature dependence of the inter-trap distance, which we can relate to a temperature dependence in the occupation of the defect creating the Coulomb potential governing Poole-Frenkel emission. At higher fields and lower temperatures, the dependency of the IV curve on the electric field can be described by ln(I/I0) = (F/Fc)2. By combining this contribution with that of the Poole-Frenkel emission, we can show that the slope at high fields, Fc, is independent of temperature. We argue that models based on direct tunneling or thermally assisted tunneling from a single defect into the valence band cannot explain the observed behavior quantitatively.


07 Oct 2015


Journal of Applied Physics