About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Macromolecules
Paper
Formation of disk- and stacked-disk-like self-assembled morphologies from cholesterol-functionalized amphiphilic polycarbonate diblock copolymers
Abstract
A cholesterol-functionalized aliphatic cyclic carbonate monomer, 2-(5-methyl-2-oxo-1,3-dioxane-5-carboxyloyloxy)ethyl carbamate (MTC-Chol), was synthesized. The organocatalytic ring-opening polymerization of MTC-Chol was accomplished by using N-(3,5-trifluoromethyl)phenyl-N′-cyclohexylthiourea (TU) in combinations with bases such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and (-)-sparteine, and kinetics of polymerization was monitored. By using mPEG-OH as the macroinitiator, well-defined amphiphilic diblock copolymers mPEG113-b-P(MTC-Chol)n (n = 4 and 11) were synthesized. Under aqueous conditions, these block copolymers self-assembled to form unique nanostructures. Disk-like micelles and stacked-disk morphology were observed for mPEG113-b-P(MTC-Chol)4 and mPEG113-b-P(MTC- Chol)11, respectively, by transmission electron microscopy (TEM). Small-angle neutron scattering supports the disk-like morphology and estimates the block copolymer micelle aggregation number in the dispersed solution. The hydrophobic nature of the cholesterol-containing block provides a versatile self-assembly handle to form complex nanostructures using biodegradable and biocompatible polymers for applications in drug delivery. © 2013 American Chemical Society.