About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NANO 2015
Conference paper
Fabrication of bow-tie antennas with mechanically tunable gap sizes below 5 nm for single-molecule emission and Raman scattering
Abstract
Raman spectroscopy is a powerful tool to unambiguously identify chemical compounds by their unique vibrational finger-print. The Raman cross-section of a single molecule, however, is extremely small and intense laser sources, long integration times and high concentrations of analytes are typical prerequisites for Raman spectroscopy. A common route to alleviate these drawbacks is the use of surface plasmon polaritons (SPP) to guide and concentrate light in constrained geometries such as nanometer-sized gaps. The resulting local electric field and chemical enhancements are sufficient to perform surface-enhanced Raman spectroscopy (SERS) down to the single-molecule level. Here, we demonstrate advances in nanolithography which enable reproducible fabrication of optical antennas for the visible range with sub-5 nm features on large and wavy substrates. A material-independent process route is described that employs cutting-edge electron-beam lithography (EBL) operated in ultra-silent laboratories to enable undisturbed lithography. Through the use of a reactive ion etching step, free-standing antennas with pillar heights of up to 250 nm have been fabricated. These antennas show a three-fold increase in luminescence intensity and spatial confinement in comparison to antennas in direct contact with the substrate. This underlines their great potential for optical direct-sensing experiments targeting few to single molecules in the feed-gap region through SERS.