About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Progress in Photovoltaics
Paper
Electrodeposited Cu2ZnSnSe4 thin film solar cell with 7% power conversion efficiency
Abstract
High performance Cu2ZnSnSe4 (CZTSe) photovoltaic materials were synthesized by electrodeposition of metal stack precursors followed by selenization. A champion solar cell with 7.0% efficiency is demonstrated. This is the highest efficiency among all of the CZTSe solar cells prepared from electrodeposited metallic precursors reported to-date. Device parameters are discussed from the perspective of material microstructure and composition in order to improve performance. In addition, a high performance electrodeposited CZTS (S only) solar cell was demonstrated and its device characteristics were compared against the CZTSe (Se only) cell. Using secondary ion mass spectrometry for the analysis of the chemical composition of the absorber layer, a higher concentration of oxygen in the electrodeposited absorber is thought to be the root cause of the lower performance of the electrodeposited CZTS or CZTSe solar cells with respect to a solar cell fabricated by evaporation. The grain boundary areas of Sn-rich composition are thought to be responsible for the lower shunt resistance commonly observed in CZTSe devices. We measured the longest minority carrier lifetime of 18 ns among all reported kesterite devices. This work builds a good baseline for obtaining higher efficiency earth-abundant solar cells, while it highlights electrodepositon as a low cost and feasible method for earth-abundant thin film solar cell fabrication. Copyright © 2013 John Wiley & Sons, Ltd.