About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
J. Micro/Nanolithogr. MEMS MOEMS
Paper
Design technology co-optimization assessment for directed self-Assembly-based lithography: Design for directed self-Assembly or directed self-Assembly for design
Abstract
We report a systematic study of the feasibility of using directed self-Assembly (DSA) in real product design for 7-nm fin field effect transistor (FinFET) technology. We illustrate a design technology co-optimization (DTCO) methodology and two test cases applying both line/space type and via/cut type DSA processes. We cover the parts of DSA process flow and critical design constructs as well as a full chip capable computational lithography framework for DSA. By co-optimizing all process flow and product design constructs in a holistic way using a computational DTCO flow, we point out the feasibility of manufacturing using DSA in an advanced FinFET technology node and highlight the issues in the whole DSA ecosystem before we insert DSA into manufacturing.