About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE JSTQE
Paper
Demonstration of a high extinction ratio monolithic CMOS integrated nanophotonic transmitter and 16 Gb/s optical link
Abstract
We present a 16-Gb/s transmitter composed of a stacked voltage-mode CMOS driver and periodic-loaded reverse biased pn junction Mach-Zehnder modulator. The transmitter shows 9-dB extinction ratio and 10.3-pJ/bit power consumption and operates with 1.3 μm light. Penalties as low as 0.5 dB were seen as compared to a 25-Gb/s LiNbO3 transmitter with both a monolithic metal-semiconductor-metal receiver and a reference receiver at 16-Gb/s operation. We also present an analytic expression for relative transmitter penalty (RTP), which allows one to quickly assess the system impact of design parameters such as peak-to-peak modulator drive voltage, modulator figure of merit, and transmitter extinction ratio to determine the circumstances under which a stacked CMOS cascode driver is desirable.