Ceramic Packages for Liquid-Nitrogen Operation

View publication


To evaluate their compatibility for use in a liquid-nitrogen computer, metallized ceramic packages with test chips joined using IBM controlled-collapse solder (Pb-Sn) technology have been cycled between 30°C and liquid-nitrogen temperature. Room-temperature electrical resistance measurements were made at regular intervals of cycles to determine whether solder failure accompanied by a significant resistance increase had occurred. For the failed solder joints characterized by the highest thermal shear strain amplitude of 3.3 percent, we were able to estimate the number of liquid-nitrogen cycles needed to produce the corresponding failure rate using a room-temperature solder lifetime model. Cross-sectional examination of the failed solder joints using scanning electron microscopy and energy dispersive X-ray analysis indicated solder cracking occurring at the solder-ceramic interface. Chip pull tests on cycled packages yielded strengths far exceeding the minimal requirement. Mechanisms involving the formation of intermetallics were proposed to account for the observed solder fracture modes after liquid-nitrogen cycling and after chip pull. Furthermore, scanning electron microscopic examination of pulled chips in cycled packages showed no apparent sign of cracking in quartz and polyimide for chip insulation. © 1989 IEEE