J.P. Locquet, J. Perret, et al.
SPIE Optical Science, Engineering, and Instrumentation 1998
Let A be a normal matrix with eigenvalues λ1, λ2,..., λn, and let G{cyrillic} denote the smallest disc containing these eigenvalues. We give some inequalities relating the center and radius of G{cyrillic} to the entries in A. When applied to Hermitian matrices our results give lower bounds on the spread maxij(λi - λj) of A. When applied to positive definite Hermitian matrices they give lower bounds on the Kantorovich ratio maxij(λi - λj)/(λi + λj). © 1994.
J.P. Locquet, J. Perret, et al.
SPIE Optical Science, Engineering, and Instrumentation 1998
Michael E. Henderson
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
Hannaneh Hajishirzi, Julia Hockenmaier, et al.
UAI 2011
Nimrod Megiddo
Journal of Symbolic Computation