About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Solid-State Electronics
Paper
Back-gated InGaAs-on-insulator lateral N+NN+ MOSFET: Fabrication and typical conduction mechanisms
Abstract
Back-gated InGaAs-on-insulator lateral N+NN+ MOSFETs are successfully fabricated by direct wafer bonding and selective epitaxial regrowth. These devices were characterized using a revisited pseudo-MOSFET configuration. Two different transport mechanisms are evidenced: volume conduction in the undepleted region of the film and surface conduction at the interface between InGaAs and buried insulator. We propose extraction techniques for the volume mobility and interface mobility. The impact of film thickness, channel width, and length is evaluated. Additional measurements reveal the variation of the transistor parameters at low temperature and under externally applied uniaxial tensile strain.