About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CloudCom 2011
Conference paper
Applications know best: Performance-driven memory overcommit with Ginkgo
Abstract
Memory overcommitment enables cloud providers to host more virtual machines on a single physical server, exploiting spare CPU and I/O capacity when physical memory becomes the bottleneck for virtual machine deployment. However, overcommiting memory can also cause noticeable application performance degradation. We present Ginkgo, a policy frame-work for overcomitting memory in an informed and automated fashion. By directly correlating application-level performance to memory, Ginkgo automates the redistribution of scarce memory across all virtual machines, satisfying performance and capacity constraints. Ginkgo also achieves memory gains for traditionally fixed-size Java applications by coordinating the redistribution of available memory with the activities of the Java Virtual Machine heap. When compared to a non-overcommited system, Ginkgo runs the DayTrader 2.0 and SPECWeb 2009 benchmarks with the same number of virtual machines while saving up to 73% (50% omitting free space) of a physical server's memory while keeping application performance degradation within 7%. © 2011 IEEE.