About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE JSSC
Paper
A 64-Gb/s 1.4-pJ/b NRZ Optical Receiver Data-Path in 14-nm CMOS FinFET
Abstract
A 64-Gb/s high-sensitivity non-return to zero receiver (RX) data-path is demonstrated in the 14-nm-bulk FinFET CMOS technology. To achieve high sensitivity, the RX incorporates a transimpedance amplifier whose gain and bandwidth are co-optimized with a 1-tap decision feedback equalization (DFE). The DFE, which operates at quarter-rate, features a look-ahead speculation to relax DFE timing to 4 unit-interval. The analog front end includes a transadmittance transimpedance inductorless variable gain amplifier, resulting in a low power and compact front end. The RX, wirebonded to a discrete GaAs photodiode, achieves an energy efficiency of 1.4 pJ/bit and -5-dBm optical modulation amplitude while recovering PRBS-7 data (bit-error-rate <10-12) modulated by a VCSEL driver with a 2-tap feed forward equalization (FFE) (main + precursor) over 7 m of graded-index 50/125-μm multimode fiber. The measured sensitivities at 56 and 32 Gb/s are -9- and -13-dBm optical modulation amplitude, respectively.