About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE JSSC
Paper
A 3.1 mW 8b 1.2 GS/s single-Channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32 nm digital SOI CMOS
Abstract
An 8b 1.2 GS/s single-channel Successive Approximation Register (SAR) ADC is implemented in 32 nm CMOS, achieving 39.3 dB SNDR and a Figure-of-Merit (FoM) of 34 fJ per conversion step. High-speed operation is achieved by converting each sample with two alternate comparators clocked asynchronously and a redundant capacitive DAC with constant common mode to improve the accuracy of the comparator. A low-power, clocked capacitive reference buffer is used, and fractional reference voltages are provided to reduce the number of unit capacitors in the capacitive DAC (CDAC). The ADC stacks the CDAC with the reference capacitor to reduce the area and enhance the settling speed. Background calibration of comparator offset is implemented. The ADC consumes 3.1 mW from a 1 V supply and occupies 0.0015 mm2. © 2013 IEEE.