About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISSCC 2016
Conference paper
A 25Gb/s ADC-based serial line receiver in 32nm CMOS SOI
Abstract
As CMOS devices continue to scale down in voltage and area, digital-based high-speed serial I/Os [1] become increasingly competitive with analog-based designs [2,3]. In addition to offering the PVT-independent performance of digital functions and superior power and area scaling to future technology nodes, digital-based I/Os can support advanced line modulation techniques that will become necessary as long-reach electrical channel data rates scale to 56Gb/s and beyond. The key enablers of a digital receiver are power and area efficient analog to digital conversion (ADC) and digital channel equalization. This paper describes the design of a 25Gb/s 2-level digital serial line receiver including a -rate 5b flash ADC, an 8-tap feed-forward equalizer (FFE), an 8-tap decision-feedback equalizer (DFE), and a baud-rate clock and data recovery circuit (CDR). The receiver features a flash ADC, which employs a new power and area efficient slicer design capable of achieving high-precision (∼1mV) threshold accuracy with an associated on-chip calibration system. The 32nm SOI CMOS receiver achieves error-free operation with margin on a reflective transmission-line channel with 40dB half-baud loss.