About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE JSSC
Paper
A 2.5D integrated voltage regulator using coupled-magnetic-core inductors on silicon interposer
Abstract
An integrated voltage regulator (IVR) is presented that uses custom fabricated thin-film magnetic power inductors. The inductors are fabricated on a silicon interposer and integrated with a multi-phase buck converter IC by 2.5D chip stacking. Several inductor design variations have been fabricated and tested. The best performance has been achieved with a set of eight coupled inductors that each occupies 0.245 mm2 and provides 12.5 nH with 270 mΩ DC. With early inductor prototypes, the IVR efficiency for a 1.8 V:1.0 V conversion ratio peaks at 71% with FEOL current density of 10.8 A/mm 2 and inductor current density of 1.53 A/mm2. At maximum load current, 69% conversion efficiency and 1.8 V:1.2 V conversion ratio the FEOL current density reaches 22.6 A/mm2 and inductor current density reaches 3.21 A/mm2. © 1966-2012 IEEE.