About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ISSCC 2017
Conference paper
A 10b 1.5GS/s pipelined-SAR ADC with background second-stage common-mode regulation and offset calibration in 14nm CMOS FinFET
Abstract
High-speed SAR ADCs became popular with modern CMOS technologies because of their mostly digital logic, making them highly suitable for compact and power-efficient multi-GS/s time-interleaved ADCs. As many applications cannot tolerate input swings ≥1Vppd, comparator noise limits the SNDR of SAR ADCs, making gain stages necessary for higher SNDR - either as comparator pre-amplifiers or between pipelined stages. Pre-amplifiers significantly reduce the conversion speed of the ADC, but they provide maximum SNDR because linearity of the amplifier is irrelevant. An interstage amplifier for pipelining best suits mid-resolution SAR ADCs, where the required linearity is limited. Moreover, pipelining results in higher conversion speeds and power efficiency because the gain stage is used only once per conversion [1]. This work presents a pipelined-SAR ADC architecture that exceeds the conversion speed of previous pipelined and single-stage SAR ADCs. The ADC achieves 50dB SNDR and 950MS/s at 2.26mW, and 1.5GS/s at 6.92mW on an area of 0.0016mm2.