ECTC 2008
Conference paper

3D silicon integration

View publication


Three-dimensional (3D) chip integration may provide a path to miniaturization, high bandwidth, low power, high performance and system scaling. Integration options can leverage stacked die and/or silicon packages depending on applications. The enabling technology elements include: (i) through-silicon-vias (TSV) with thinned silicon wafers, (ii) fine pitch wiring, (iii) fine pitch interconnection between stacked die, (iv) fine pitch test for known-good die, and (v) power delivery, distribution and thermal cooling technology. Applications may range from miniaturization of portable electronics like image sensors and cell phones to power efficient, high performance computing solutions such as servers and super computers. Silicon based packaging and 3D stacked die technologies have been in research studies for more than a decade at IBM and in industry, universities & consortia. IBM research experiments have included test vehicle design, build, characterization and modeling. Robust structures and processes have been developed based on (i) process learning for silicon based structures, (ii) assembly process comparisons for fine pitch chip interconnection, (iii) electrical, mechanical and thermal characterization and (iv) reliability & accelerated stress characterization. TSV technology investigations have included composite, copper and tungsten metallurgies. Wiring demonstrations ranged from sub-micron fine pitch wiring line widths & spaces to larger dimensions. I/O interconnections investigated feature sizes such as 100 I/O / mm2, 400 I/O/mm2, and interconnection features sizes which support 2500 I/O / mm2. In addition, integrated decoupling capacitors of one hundred ten nano-farads per mm2 per layer and assembly of module structures on silicon packages with ceramic or organic base packages were demonstrated. Examples of robust TSV structures and characterization, single die with silicon interposers, multiple die on a silicon package and stacked die assemblies are given along with highlights of characterization including aspects of electrical, mechanical and reliability results. This research paper describes recent advances in industry and reports advancements from IBM in the design, technical challenges and progress toward 3D chip integration structures. In addition, examples of potential applications that may take advantage of 3D integration are discussed. ©2008 IEEE.