About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IUI 2014
Conference paper
Who have got answers? Growing the pool of answerers in a smart enterprise social QA system
Abstract
On top of an enterprise social platform, we are building a smart social QA system that automatically routes questions to suitable employees who are willing, able, and ready to provide answers. Due to a lack of social QA history (training data) to start with, in this paper, we present an optimization- based approach that recommends both active (seed) and inactive (prospect) answerers for a given question. Our approach includes three parts. First, it uses a predictive model to find top-ranked seed answerers by their fitness, including their ability and willingness, to answer a question. Second, it uses distance metric learning to discover prospects most similar to the seeds identified in the first step. Third, it uses a constraint-based approach to balance the selection of both seeds and prospects identified in the first two steps. As a result, not only does our solution route questions to top-matched active users, but it also engages inactive users to grow the pool of answerers. Our real-world experiments that routed 114 questions to 684 people identified from 400,000+ employees included 641 prospects (93.7%) and achieved about 70% answering rate with 83% of answers received a lot/full confidence. © 2014 ACM.