About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Mathematical Programming
Paper
Valid inequalities based on the interpolation procedure
Abstract
We study the interpolation procedure of Gomory and Johnson (1972), which generates cutting planes for general integer programs from facets of cyclic group polyhedra. This idea has recently been re-considered by Evans (2002) and Gomory, Johnson and Evans (2003). We compare inequalities generated by this procedure with mixed-integer rounding (MIR) based inequalities discussed in Dash and Gunluk (2003). We first analyze and extend the shooting experiment described in Gomory, Johnson and Evans. We show that MIR based inequalities dominate inequalities generated by the interpolation procedure in some important cases. We also show that the Gomory mixed-integer cut is likely to dominate any inequality generated by the interpolation procedure in a certain probabilistic sense. We also generalize a result of Cornuéjols, Li and Vandenbussche (2003) on comparing the strength of the Gomory mixed-integer cut with related inequalities.