About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
MLCAD 2021
Conference paper
Using Deep Neural Networks and Derivative Free Optimization to Accelerate Coverage Closure
Abstract
In computer aided design (CAD), a core task is to optimize the parameters of noisy simulations. Derivative free optimization (DFO) methods are the most common choice for this task. In this paper, we show how four DFO methods, specifically implicit filtering (IF), simulated annealing (SA), genetic algorithms (GA), and particle swarm (PS), can be accelerated using a deep neural network (DNN) that acts as a surrogate model of the objective function. In particular, we demonstrate the applicability of the DNN accelerated DFO approach to the coverage directed generation (CDG) problem that is commonly solved by hardware verification teams.