About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Electron Device Letters
Paper
Universality of short-channel effects in undoped-body silicon nanowire MOSFETs
Abstract
Experimental data from undoped-body gate-all-around (GAA) silicon nanowire (NW) MOSFETs with different sizes demonstrate the universality of short-channel effects as a function of LEFF/λ, where LEFF is the effective channel length and λ is the electrostatic scaling length. Data from undoped-body single-gate extremely thin SOI (ETSOI) devices additionally show that the universality of short-channel effects is valid for any undoped-body fully depleted SOI MOSFET. Our data indicate that LEFF of undoped GAA NW MOSFETs can be scaled down by ∼2.5 times compared with undoped single-gate ETSOI MOSFETs while maintaining equivalent short-channel control. © 2010 IEEE.