About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
JMEMS
Paper
Thermoelectric characterization and power generation using a silicon-on-insulator substrate
Abstract
We demonstrate techniques for measuring thermoelectric voltages and generating on-chip power using a silicon-on-insulator substrate. Our design uses lateral heat conduction in the silicon overlayer to establish temperature gradients, which dramatically reduces microfabrication complexity compared to competing designs based on a free-standing membrane. This letter characterizes the thermoelectric power of a metal-semiconductor structure involving a doped SbTe alloy that is relevant for phase-change memory. The thermoelectric power of the SbTe-TiW thermocouple is 24 μV/K, and the power generation output achieves up to 0.56 μW/cm 2 with a temperature gradient of 18°. © 2011 IEEE.