About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Nano Letters
Paper
Synthesis of Polyimides in Molecular-Scale Confinement for Low-Density Hybrid Nanocomposites
Abstract
In this work, we exploit a confinement-induced molecular synthesis and a resulting bridging mechanism to create confined polyimide thermoset nanocomposites that couple molecular confinement-enhanced toughening with an unprecedented combination of high-temperature properties at low density. We describe a synthesis strategy that involves the infiltration of individual polymer chains through a nanoscale porous network while simultaneous imidization reactions increase the molecular backbone stiffness. In the extreme limit where the confinement length scale is much smaller than the polymer's molecular size, confinement-induced molecular mechanisms give rise to exceptional mechanical properties. We find that polyimide oligomers can undergo cross-linking reactions even in such molecular-scale confinement, increasing the molecular weight of the organic phase and toughening the nanocomposite through a confinement-induced energy dissipation mechanism. This work demonstrates that the confinement-induced molecular bridging mechanism can be extended to thermoset polymers with multifunctional properties, such as excellent thermo-oxidative stability and high service temperatures (>350 °C).