About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
HVAC and R Research
Paper
Silicon microchannel cooling for high power chips
Abstract
In this work, single-phase Si microchannel coolers have been designed and characterized for cooling very high power density chips in single-chip modules (SCMs) in a laboratory environment. The average heat transfer coefficient was determined for a wide range of microchannel designs. Through the use of multiple heat exchanger zones and optimized cooler fin design, an average unit thermal resistance of 16.2°C·mm2/W between the chip surface and the inlet cooling water was demonstrated for an Si microchannel cooler attached to a chip with Ag epoxy in an SCM. Very good uniformity from SCM to SCM (±2%) and within an SCM (±5%) was achieved. Further, cooling of a thermal test chip with a microchannel cooler bonded to it and packaged in an SCM was also demonstrated for a chip power density greater than 400 W/cm2. Coolers of this design should be able to cool chips with average power densities of 500 W/cm2 or more. © 2006 Taylor & Francis Group, LLC.