About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SwSTE 2003
Conference paper
Self-stabilizing autonomic recoverer for eventual Byzantine software
Abstract
We suggest to model software package flaws (bugs) by assuming eventual Byzantine behavior of the package. In particular, the package has been tested by the manufacturer for limited length scenarios when started in a predefined initial state; the behavior beyond the tested scenario may be Byzantine. Restarts (reboots) are useful for recovering such systems. We suggest a general yet practical framework and paradigm, based on a theoretical foundation, for the monitoring and restarting of systems. An autonomic recoverer that monitors and restarts the system is proposed, where: the autonomic recoverer is designed to handle different tasks given specific task requirements in the form of predicates and actions. DAG subsystem hierarchy structure is used by a consistency monitoring procedure in order to achieve gracious recovery. The existence and correct functionality of the autonomic recovery is guaranteed by the use of a kernel resident (anchor) process, and the design of the process to be self-stabilizing. The autonomic recoverer uses new scheme for liveness assurance via online monitoring that complements known schemes for online ensuring safety.