About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Affective Computing
Paper
Quantitative study of individual emotional states in social networks
Abstract
Marketing strategies without emotion will not work. Emotion stimulates the mind 3,000 times quicker than rational thought. Such emotion invokes either a positive or a negative response and physical expressions. Understanding the underlying dynamics of users' emotions can efficiently help companies formulate marketing strategies and support after-sale services. While prior work has focused mainly on qualitative aspects, in this paper we present our research on quantitative analysis of how an individual's emotional state can be inferred from her historic emotion log and how this person's emotional state influences (or is influenced by) her friends in the social network. We statistically study the dynamics of individual's emotions and discover several interesting as well as important patterns. Based on this discovery, we propose an approach referred to as MoodCast to learn to infer individuals' emotional states. In both mobile-based social network and online virtual network, we verify the effectiveness of our proposed approach. © 2012 IEEE.