About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IUI 2007
Conference paper
Distributed augmentation-based learning: A learning algorithm for distributed collaborative programming-by-demonstration
Abstract
The learning algorithms used in Programming-by-Demonstration (PBD) are either on-line and incremental or off-line and batch. Neither category is entirely suitable for capturing know-how from demonstrations in a distributed, collaborative environment, where multiple experts can independently provide examples to improve the model.In this paper we describe Distributed Augmentation-Based Learning (DABL), the first real-time PBD learning algorithm suited for distributed know-how acquisition. DABL is an incremental learning algorithm that uses a version-control-like paradigm to combine independently constructed procedure models. An expert can check out a procedure model from a repository and modify it by means of new demonstrations or by manually editing it. The expert then reconciles the changes with those concurrently made by other experts and checked into the repository.DABL automatically merges the two procedures, learns new decision points based on reconcilable differences, and identifies conflicts where there are multiple valid ways of combining the changes or where the combination produces an invalid model, that is, one that does not lie in the search space of the learning algorithm. Copyright 2007 ACM.