About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Properties of velocity circulation in three-dimensional turbulence
Abstract
Properties of velocity circulation in three-dimensional turbulence are studied using data from high-resolution direct numerical simulation of Navier-Stokes equations. The probability density function (PDF) of the circulation depends on the area of the closed contour for which circulation is calculated, but not on the shape of the contour. For contours lying within the inertial range, the PDF has a Gaussian core with conspicuous exponential tails, indicating that intermittency plays an important role in circulation statistics. The measured scaling exponents are anomalous and substantially smaller than those implied by Kolmogorov's phenomenology. © 1996 American Physical Society.