About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NeurIPS 2020
Conference paper
Private Identity Testing for High-Dimensional Distributions
Abstract
In this work we present novel differentially private identity (goodness-of-fit) testers for natural and widely studied classes of multivariate product distributions: Gaussians in R^d with known covariance and product distributions over {\pm 1}^d. Our testers have improved sample complexity compared to those derived from previous techniques, and are the first testers whose sample complexity matches the order-optimal minimax sample complexity of O(d^1/2/alpha^2) in many parameter regimes. We construct two types of testers, exhibiting tradeoffs between sample complexity and computational complexity. Finally, we provide a two-way reduction between testing a subclass of multivariate product distributions and testing univariate distributions, and thereby obtain upper and lower bounds for testing this subclass of product distributions.