About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IPDPSW 2011
Conference paper
Performance, power, and thermal analysis of low-power processors for scale-out systems
Abstract
There is increased interest, in high-performance computing as well as in commercial datacenters, in so-called scale-out systems, where large numbers of low-cost and low-power-dissipation servers are used for workloads which have available coarse-grained parallelism. One target class of devices for building scale-out systems is the class of low-power processors, such as those based on the ARM® architecture, the Power Architecture®, and the Intel® Atom™ processor. This article presents a detailed characterization of three contemporary low-power processors covering all the aforementioned ISAs, all implemented in state-of-the-art 45 nm semiconductor processes. Processor performance, power dissipation, thermal load, and board-level power dissipation apportionment are presented, via a combination of hardware performance counters, OS-level timing measurements, current measurements, and thermal imaging via a microbolometer array. It is demonstrated that while certain processors might provide low power dissipation, the most energy-efficient platform depends on the characteristics of the application, and the design of the entire platform (including integrated versus on-board peripherals, power supply regulators, etc.). The lowest-power platform showed a power-efficiency advantage of almost four times lower idle power dissipation, and almost five times lower active power dissipation for a single-threaded workload, versus the highest-power-dissipation platform studied. The latter however achieved a factor of two better energy-efficiency than its closest competitor, when executing a throughput-oriented workload, due to significantly better compute performance and available hardware concurrency. © 2011 IEEE.