Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering
We consider the set multicover problem in geometric settings. Given a set of points P and a collection of geometric shapes (or sets) F, we wish to find a minimum cardinality subset of F such that each point p ∈ P is covered by (contained in) at least d(p) sets. Here, d(p) is an integer demand (requirement) for p. When the demands d(p) = 1 for all p, this is the standard set cover problem. The set cover problem in geometric settings admits an approximation ratio that is better than that for the general version. In this article, we show that similar improvements can be obtained for the multicover problem as well. In particular, we obtain an O(log opt) approximation for set systems of bounded VC-dimension, and an O(1) approximation for covering points by half-spaces in three dimensions and for some other classes of shapes. © 2012 ACM.
Michael Ray, Yves C. Martin
Proceedings of SPIE - The International Society for Optical Engineering
Shu Tezuka
WSC 1991
Kafai Lai, Alan E. Rosenbluth, et al.
SPIE Advanced Lithography 2007
J. LaRue, C. Ting
Proceedings of SPIE 1989