About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Applied Mathematics Letters
Paper
On L2 convergence of the Hamiltonian Monte Carlo
Abstract
We represent the abstract Hamiltonian (Hybrid) Monte Carlo (HMC) algorithm as iterations of an operator on densities in a Hilbert space, and recognize two invariant properties of Hamiltonian motion sufficient for convergence. Under a mild coverage assumption, we present a proof of strong convergence of the algorithm to the target density. The proof relies on the self-adjointness of the operator, and we extend the result to the general case of the motions beyond Hamiltonian ones acting on a finite dimensional space, to the motions acting an abstract space equipped with a reference measure, as long as they satisfy the two sufficient properties. For standard Hamiltonian motion, the convergence is also geometric in the case when the target density satisfies a log-convexity condition.